Exercise 25

Give an alternative solution to Example 3 by letting $y=\sinh ^{-1} x$ and then using Exercise 9 and Example 1(a) with x replaced by y.

Solution

The aim in Example 3 is to show that

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) .
$$

Let

$$
y=\sinh ^{-1} x
$$

Then

$$
\sinh y=x
$$

Use the result from Example 1(a), $\cosh ^{2} y-\sinh ^{2} y=1$, to get a formula for $\cosh y$.

$$
\cosh y= \pm \sqrt{\sinh ^{2} y+1}
$$

Hyperbolic cosine is always positive, so discard the minus sign.

$$
\begin{aligned}
\cosh y & =\sqrt{\sinh ^{2} y+1} \\
& =\sqrt{x^{2}+1}
\end{aligned}
$$

According to Exercise 9, $\cosh y+\sinh y=e^{y}$, so

$$
\begin{aligned}
e^{y} & =\sinh y+\cosh y \\
& =x+\sqrt{x^{2}+1}
\end{aligned}
$$

Take the natural logarithm of both sides to solve for y.

$$
\begin{aligned}
\ln e^{y} & =\ln \left(x+\sqrt{x^{2}+1}\right) \\
y \ln e & =\ln \left(x+\sqrt{x^{2}+1}\right) \\
y & =\ln \left(x+\sqrt{x^{2}+1}\right)
\end{aligned}
$$

Therefore,

$$
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)
$$

